Impact of Climate Change on the Backup Infrastructure of Highly Renewable Electricity Systems
Abstract
The global climate is currently undergoing vast changes due to the high concentrations of carbon dioxide within the atmosphere. This is already evident through the occurrence of more extreme weather events around the globe. Consequently, in this work the impact of climate change on highly weather dependent electricity systems is assessed by quantifying the extreme needs for dispatchable energy. Large-scale weather data with 3 hourly resolution, from the EURO-CORDEX project are used, reflecting three different projections of the Intergovernmental Panel on Climate Change of possible climate outcomes for the 21st century. It is found that the end-of-century period projected by two representative concentration pathways, RCP2.6 and RCP4.5, slightly increases the need for dispatchable backup energy. On the other hand, the RCP8.5 emission scenario leads to more significant increases. The demand for dispatchable energy happens to occur temporally highly clustered which introduce challenges to the electricity systems. Energy storage may be applied to handle the extreme electricity demands. To investigate this possibility, a simple theoretical modelling of energy storage is presented.